

Group Diffie-Hellman Key Exchange Secure Against Dictionary Attacks

Olivier Chevassut

(Ernest Orlando Lawrence Berkeley National Lab)

Emmanuel Bresson and David Pointcheval

(École normale supérieure)

Outline

- Motivation
- Setting
- Related Work
- Model of Security
- Definitions of Security
- A Protocol for Password-Based Key Exchange
- Theorem of Security
- Conclusion

Motivation

- An increasing number of mobile applications need to communicate within small groups, e.g.
 - conferencing and meeting
 - personal networking
 - emergency rescue and military operations
- An increasing number of mobile applications have security requirements
 - data privacy and integrity
 - protection from hackers
 - protection from viruses
- Mobile group communication must address security needs

Setting

Member characteristics

- relatively small group (up to 100 members)
- members have similar compute power
- no hierarchy among members (no client/server model)

Environmental constraints

- no security infrastructure
- no fixed networking infrastructure
- multicast communication capabilities

Prior Work

- "Provably Authenticated Group DH Key Exchange", ACM CCS'01
 - a small number of users gather to form a group
 - public-key infrastructure
 - treatment in the framework of provable security
 - a provably secure protocol for authenticated group DH key exchange

How Provable Security works

1. Specification of a model of computation

- instances of players are modeled via oracles
- adversary controls all interactions among the oracles
- adversary's capabilities are modeled by queries to the oracles
- adversary plays a game against the oracles

2. Definition of the security goals

- authentication, freshness and secrecy of session keys, forward-secrecy
- security against dictionary attacks

3. Statement of the intractability assumptions

group computational/decisional Diffie-Hellman (GCDH/GDDH)

4. Description of the algorithm and its proof of security

 proof shows by contradiction that the algorithm achieves the security goals under the intractability assumptions

Model of Communication

- A set of *n* players
 - each player is represented by an oracle
 - each player holds a low-entropy secret (PW)
- A multicast group consisting of a set of players

Modeling the Adversary

- Adversary's capabilities modeled through queries
 - send: send messages to instances
 - execute: obtain honest executions of the protocol
 - reveal: obtain an instance's session key
 - corrupt: obtain the value of the password

Freshness Related Queries

Security Goal : AKE Authenticated Key Exchange

Implicit authentication

— only the intended partners can compute the session key

Semantic security

- the session key is indistinguishable from a random string
- modeled via a Test-query

Security against dictionary attacks

- passive eavesdropping does not help the adversary in computing any information about the password
- only interactions with the instances help the adversary in computing information about the password

Security Definitions (AKE)

Intractability Assumption: GCDH Group Computational Diffie-Hellman """

- The CDH assumption generalized to the multi-party case
 - given the values $g^{\prod x_i}$ for some choice of proper subset of $\{1, ..., n\}$
 - one has to compute the value $g^{x_1..x_n}$
- Example with three parties (n=3 and l={1,2,3})

— given the set of values $, g^{x_1}$, g $, g^{x_1x_2}, g^{x_1}, g^{x_2}$

 $, g^{x_1x_3}, g^{x_2x_3}$, $g^{x_1x_2}$

— compute the value $g^{x_1x_2x_3}$

The GCDH is equivalent to both the DDH and CDH, SAC'98

A Protocol for Password-Based Group Key Exchange

- The session key is
 - $--sk=H(g^{x_1x_2...x_n})$
- Ring-based algorithm are encrypted under the password
 - up-flow: the contributions of each instance are gathered
 - down-flow: the last instances broadcasts the result
 - instances compute the session key from the broadcast
- Many details abstracted out

The Algorithm

- Up-flow: U_i raises received values to the power of the values (x_i, α_i) and forwards to U_{i+1}
- Down-flow: U_n processes the last up-flow and broadcasts

Security Measurement (AKE) : Dictionary Attacks

Theorem

$$\begin{split} \mathsf{Adv}^{\mathsf{ake}}(T,q_s,q_e) &\leq 2q_s/N + 2q_s \cdot \mathsf{Adv}^{\mathsf{mddh}}(T') \\ &+ 2q_h \cdot \mathsf{Succ}^{\mathsf{gcdh}}(\mathsf{T'}) + \mathsf{wnegligible\ terms} \\ T' &\leq T + \mathsf{n}(3q_s + q_e) \cdot T_{\mathsf{exp}}(k) \end{split}$$

- Ideal-cipher assumption
- Security against dictionary attacks
 - the adversary's advantage grows essentially with the ratio of interactions (number of send-queries) to the number of password

Defining the Games

- Game 0: the adversary plays against the oracles in order to defeat the AKE-security of the protocol
- Game 1: we delete the executions in which the adversary has guessed the password
- Game 2 : we simulate the protocol flows using the elements from a GCDH-tuple
- Game 3 : we simulate the protocol flows using the elements from a GCDH-tuple whose value $g^{x_1..x_n}$ is unknown
- Game 4: we answer at random to the Test-query and thus fix the adversary's probability of correctly guessing the bit b to be 1/2.
- Proba[Adversary has guessed the password] = $2q_s/N + q_s \cdot Adv^{mddh}(T')$

Conclusion and Future Work

Summary

- A security model for security against dictionary attacks
- A password group key agreement protocol
- A proof of security

Limitations

— Ideal-hash and ideal-cipher assumptions

Work in Progress

- "Key Agreement for Heterogeneous Mobile Devices",
- "Proofs of Security for the IEEE P1363 AuthA Protocol and Extensions"